metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊9D6, C6.302+ 1+4, C22⋊C4⋊8D6, C22≀C2⋊8S3, C23⋊2D6⋊7C2, (C2×D4).87D6, C24⋊4S3⋊9C2, D6⋊C4⋊15C22, (C2×C6).138C24, (C2×C12).32C23, (S3×C23)⋊8C22, (C23×C6)⋊11C22, C2.32(D4⋊6D6), C23.12D6⋊13C2, C3⋊1(C24⋊C22), (C4×Dic3)⋊18C22, (C2×Dic6)⋊23C22, (C6×D4).112C22, C23.11D6⋊15C2, C6.D4⋊18C22, (C22×S3).57C23, C23.120(C22×S3), C22.159(S3×C23), (C22×C6).183C23, (C2×Dic3).63C23, (C3×C22≀C2)⋊9C2, (C3×C22⋊C4)⋊8C22, (C2×C4).32(C22×S3), (C2×C3⋊D4).22C22, SmallGroup(192,1153)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊9D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=f2=1, ab=ba, eae-1=ac=ca, ad=da, faf=acd, fbf=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 800 in 260 conjugacy classes, 91 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C2×Q8, C24, C24, Dic6, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C22≀C2, C22≀C2, C4.4D4, C4×Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, C2×C3⋊D4, C6×D4, S3×C23, C23×C6, C24⋊C22, C23.11D6, C23.12D6, C23⋊2D6, C24⋊4S3, C3×C22≀C2, C24⋊9D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, S3×C23, C24⋊C22, D4⋊6D6, C24⋊9D6
(1 40)(2 38)(3 42)(4 34)(5 32)(6 36)(7 37)(8 41)(9 39)(10 31)(11 35)(12 33)(13 25)(14 44)(15 27)(16 46)(17 29)(18 48)(19 43)(20 26)(21 45)(22 28)(23 47)(24 30)
(1 13)(2 17)(3 15)(4 16)(5 14)(6 18)(7 19)(8 23)(9 21)(10 22)(11 20)(12 24)(25 40)(26 35)(27 42)(28 31)(29 38)(30 33)(32 44)(34 46)(36 48)(37 43)(39 45)(41 47)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 46)(26 47)(27 48)(28 43)(29 44)(30 45)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)(25 27)(28 30)(31 36)(32 35)(33 34)(37 42)(38 41)(39 40)(43 45)(46 48)
G:=sub<Sym(48)| (1,40)(2,38)(3,42)(4,34)(5,32)(6,36)(7,37)(8,41)(9,39)(10,31)(11,35)(12,33)(13,25)(14,44)(15,27)(16,46)(17,29)(18,48)(19,43)(20,26)(21,45)(22,28)(23,47)(24,30), (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,40)(26,35)(27,42)(28,31)(29,38)(30,33)(32,44)(34,46)(36,48)(37,43)(39,45)(41,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,27)(28,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,45)(46,48)>;
G:=Group( (1,40)(2,38)(3,42)(4,34)(5,32)(6,36)(7,37)(8,41)(9,39)(10,31)(11,35)(12,33)(13,25)(14,44)(15,27)(16,46)(17,29)(18,48)(19,43)(20,26)(21,45)(22,28)(23,47)(24,30), (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,40)(26,35)(27,42)(28,31)(29,38)(30,33)(32,44)(34,46)(36,48)(37,43)(39,45)(41,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,27)(28,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,45)(46,48) );
G=PermutationGroup([[(1,40),(2,38),(3,42),(4,34),(5,32),(6,36),(7,37),(8,41),(9,39),(10,31),(11,35),(12,33),(13,25),(14,44),(15,27),(16,46),(17,29),(18,48),(19,43),(20,26),(21,45),(22,28),(23,47),(24,30)], [(1,13),(2,17),(3,15),(4,16),(5,14),(6,18),(7,19),(8,23),(9,21),(10,22),(11,20),(12,24),(25,40),(26,35),(27,42),(28,31),(29,38),(30,33),(32,44),(34,46),(36,48),(37,43),(39,45),(41,47)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,46),(26,47),(27,48),(28,43),(29,44),(30,45),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19),(25,27),(28,30),(31,36),(32,35),(33,34),(37,42),(38,41),(39,40),(43,45),(46,48)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | ··· | 4I | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 12 | 12 | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | 2+ 1+4 | D4⋊6D6 |
kernel | C24⋊9D6 | C23.11D6 | C23.12D6 | C23⋊2D6 | C24⋊4S3 | C3×C22≀C2 | C22≀C2 | C22⋊C4 | C2×D4 | C24 | C6 | C2 |
# reps | 1 | 6 | 3 | 3 | 2 | 1 | 1 | 3 | 3 | 1 | 3 | 6 |
Matrix representation of C24⋊9D6 ►in GL8(𝔽13)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 11 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 1 | 2 | 0 |
11 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 | 7 | 3 |
0 | 0 | 0 | 0 | 3 | 6 | 10 | 6 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 4 | 12 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 9 | 0 | 0 | 1 |
G:=sub<GL(8,GF(13))| [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,11,1,11,0,0,0,0,0,0,0,1,0,0,0,0,1,2,0,2,0,0,0,0,0,1,0,0],[11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,1,0,7,3,0,0,0,0,3,12,0,6,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,8,0,4,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,9,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C24⋊9D6 in GAP, Magma, Sage, TeX
C_2^4\rtimes_9D_6
% in TeX
G:=Group("C2^4:9D6");
// GroupNames label
G:=SmallGroup(192,1153);
// by ID
G=gap.SmallGroup(192,1153);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,1571,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*c*d,f*b*f=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations